
 
 

 

DEVELOPING ENHANCED OPEN SOURCE 
SOFTWARE  

PROCESS MODELING (DEOSSPM) 

 
A Thesis Presented 

 
 

by 
 

Haimanot Abun Amanu 
 

to 
 

The Faculty of Informatics 
 

of 
 

St. Mary’s University 
 

In Partial Fulfillment of the Requirements 
for the Degree of Master of Science 

 
in 
 

Computer Science 
 
 

February, 2020 



 
 

 

ACCEPTANCE 

Developing Enhanced Open Source Software  
Process Modeling (DEOSSPM) 

By 

Haimanot Abun Amanu 

 

Accepted by the Faculty of Informatics, St. Mary’s University, in partial 
fulfillment of the requirements for the degree of Master of Science in 

Computer Science 
 
 
 

Thesis Examination Committee: 
 
 

________________________________________________________ 
Internal Examiner 

 
 

_________________________________________________________ 
External Examiner 

 
 

__________________________________________________________ 
Dean, Faculty of Informatics 

 
 
 
 
 
 

January 2020 

 

 



 
 

DECLARATION 

I, the undersigned, declare that this thesis work  is my original work, has not been 

presented for a degree in this or any other universities, and all sources of materials 

used for the thesis work have been duly acknowledged. 

 

________________________________ 
Full Name of Student 

 
____________________________ 

Signature 
 

Addis Ababa 
 

Ethiopia 
 

 

This thesis has been submitted for examination with my approval as advisor. 

 

_____________________________________________ 
Full Name of Advisor 

 
 

_______________________ 
Signature 

 
Addis Ababa 

 
Ethiopia 

 

 

 

February 2020 



i 
 

ACKNOWLEDGMENTS 
 

     Before all, I would like to thank God, for giving me strength and commitments to 

begin and finalize the study. 

 

Then I would like to extend my thanks to my advisor Dr Asrat Mulatu for giving me 

an opportunity to research a somewhat unique and not so much done before. Thanks 

especially for a flexible yet supportive advisory style. My appreciation and respect to 

those who have pioneered open-source software development. It is a truly unique 

approach and a fascinating area for research. 

 

     At last, but certainly not least, most heartfelt thanks to my wife, Hirut Wossenu 

for her motivation and continued tolerance of long hours at the keyboard. 

 

 



ii 
 

Table of Contents 
 

ACKNOWLEDGMENTS .............................................................................................. i 

Table of Contents ........................................................................................................... ii 

List of Acronyms.......................................................................................................... iv 

List of Figures .................................................................................................................v 

Abstract ....................................................................................................................... vii 

CHAPTER ONE 

INTRODUCTION ...........................................................................................................1 

1.1. Background ...........................................................................................................1 

1.2. Statement of the Problem .......................................................................................9 

1.3. Objectives ........................................................................................................... 11 

1.3.1. General objective ............................................................................................ 11 

1.3.2. Specific objectives .......................................................................................... 11 

CHAPTER TWO 

LITERATURE REVIEW .............................................................................................. 12 

2.1. Introduction ......................................................................................................... 12 

2.2. Existing OSS development process models .......................................................... 13 

2.2.1. Process models for OSS .................................................................................. 15 

Figure 2.1:  Development Model Propose by DoD .................................................... 16 

Limitations of the model ........................................................................................... 19 

2.2.2. Characteristics of most OSS development models .......................................... 32 

CHAPTER THREE 

METHODOLOGY ........................................................................................................ 34 

3.1. Introduction ......................................................................................................... 34 

3.2. Research design ................................................................................................... 34 



iii 
 

3.3. Sources of data .................................................................................................... 34 

3.4. Sampling  technique ............................................................................................ 35 

3.5. Sample size ......................................................................................................... 35 

3.6. Instruments of data collection .............................................................................. 35 

3.7. Technique of sampling ........................................................................................ 36 

3.8. Data collection  methods...................................................................................... 36 

3.9. Method of analysis .............................................................................................. 36 

3.10. Method of Data Analysis .................................................................................... 36 

CHAPTER FOU 

PROPOSED ENHANCED OSS PROCESS MODELING ............................................. 37 

3.1. Introduction ......................................................................................................... 37 

3.2. Presentation, analysis and interpretation of data ................................................... 38 

3.3. Supports from empirical study ............................................................................. 45 

3.4. Conclusion of the analysis ................................................................................... 46 

3.5. Properties of the proposed model ......................................................................... 46 

3.6. The proposed model process ................................................................................ 47 

3.7. Steps of developing the proposed model .............................................................. 48 

3.8. Enhanced Agile Incremental: The proposed process modeling ............................. 49 

3.9. Phases  of the proposed model ............................................................................. 52 

3.10. Characteristics of the proposed model ................................................................ 55 

3.11. Validation of the proposed model ....................................................................... 60 

CHAPTER FIVE 

CONCLUSIONS AND FUTURE WORKS ................................................................... 63 

5.1. Conclusion .......................................................................................................... 63 

5.2. Future Works ....................................................................................................... 64 

REFERENCES .............................................................................................................. 65 

Appendices ................................................................................................................ 68 

 

 



iv 
 

List of Acronyms 
 

BSD: -Berkeley Software Distribution 

CASE: -Computer Aided Software Engineering 

CIFS: - Common Internet File System 

CSSD: - Closed Source Software Development 

CSS: -   Closed Source Software 

C2Net:- Cloud Collaborative Networks 

CVS: -   Concurrent Version System  

DoD:- Department of Defense  

FSF: -    Free Software Foundation 

GNU: - Gnu’s Not Unix 

GPL: -   General Public License 

HTTP: -Hyper Text Transfer Protocol 

KLOC –Thousands Lines Of Code 

MIT - Massachusetts Institute of Technology 

NCSA: -National Center for Supercomputing Applications 

OSS:- Open Source Software  

OSSD - Open Source Software Development 

OSSDP;-Open Source Software Development process 

POSIX:-Portable Operating System Interface 

RAD: - Rapid Application Development 

SDLC: -Software Development Life Cycle  

SMB:-  Server Message Block 

SYS V: System V 

TMRC: Tech Model Railroad Club 

 

 

 



v 
 

 

List of Figures 
 

Figure 2.1: Development Model Process by DoD ............................................................. 16 

 Figure 2.2:OSS Development Process Lifecycle .............................................................. 18 

Figure 2.3Licencing and version control model................................................................. 23 

Figure 2.4:Product Life Cycle Model ................................................................................ 25 

Figure 2.5:Scacchi Process flow ....................................................................................... 27 

Figure 2.6 :Gilliam Model ................................................................................................ 28 

Figure 4.1:OSS rocess stages ............................................................................................ 48 

Figure 4.2:the proposed model .......................................................................................... 51 

Figure 4.3:definitional Level of the Proposed model ......................................................... 55 

Figure 4.4:proposed model development views ................................................................. 56 

Figure 4.5:Activity diagram of the propodsed model......................................................... 59 

 

 

 

 

 

 

 

 

 

 

 

 



vi 
 

List of Tables 

Table 1.1:comparison between OSSD and CSSD processes .............................................4 

Table 1.2:Characteristics of selected open source projects [8]. .........................................6 

Table 1.3:Difference between traditional and OSS projects ............................................ 29 

Table 4.1:Application and Description of OSS ............................................................... 38 

Table 4.2: comparison between existing models and the proposed ones ......................... 61 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vii 
 

Abstract 

Developing Enhanced Open Source Software process model (DEOSSPM) closely 
resembles the modeling process of conventional software where the most common 
elements in process modeling will be identified. This thesis firstly shows the current open 
source software modeling types and techniques with their limitations. After reviewing the 
types of modeling and techniques, a new open source software process model is 
proposed. The proposed model shows the common features of open source software 
process flows and proposed a new process modeling methods and technique. In addition, 
it shows the advantages with its challenges and limitations.  

The proposed model is designed after reviewing different Open Source Software process 
models. The research tries to summarize the challenges from reviewed open source 
projects, and Models the open source software processes. Mainly the existing models 
haveno well-structured process models. This leads difficulty with reusing the codes and poor 
documentation. 

So, many models are reviewed and analyzed through systematic research technique with 
thematic analysis methodology.  In addition to this, questionnaires are prepared to 
software developers in Addis Ababa and analyzed the result. Web interviewing through 
email methodology is also used to design this process model. Sothe new proposed model 
tries to solve documentation problem and reusing codes, which were challenges of 
existing open source software process models.  

Validating the model is performed through different questionaries’ suggested to open 
source users of software developers from Addis Ababa Ethiopia and from open source 
users from the web.  

Generally, this thesis attempts to describe an introductory process model for open-source 
software development. Common characteristics are identified and discussed with specific 
examples from various open-source projects. The results lend support to suggestions that 
open-source software development follows an adaptive lifecycle, with a flexible 
management model emphasizing leadership, collaboration, and accountability. Moreover, 
open source would seem to represent an alternative approach to distributed software 
development that, able to offer useful information about common problems as 

Well as possible solutions 



1 
 

CHAPTER ONE 

INTRODUCTION 

1.1. Background 

Free and open source [1] software is an umbrella term for software that is free and open 

source software. Free and open source software allows the user to inspect the source code 

and provides a high level of control of the software's functions compared to proprietary 

software.  

It is software like any other software’s. However it is distinguished by its license, or 

terms of use, which guarantees certain freedoms, in contrast to closed proprietary 

software which restricts these rights. Open source software guarantees the right to access 

and modify the source code, and to use reuses and redistribute the software, all with no 

royalty or other costs. In some cases, there can be an obligation to share improvements 

with the wider community, thus guaranteeing global benefit. 

Most of the open source project developers are working remotely, mostly in their free 

time and mainly on their personal interest [1] [2]. But in the proprietary software 

development the project manager sets a target and the developers are bound to work 

according to the plan [3]. 

 

In general terms, open source software is licensed under terms which allow the user 

to practice, the so called .four freedoms.: 

1. Use the software without access restrictions, within the terms of the licence 

applied 

2. View the source code 

3. Improve and add to the object and source code, within the terms of the license applied 

and this may include a term making it mandatory to publish modified code on the 

community website 

4. Distribute the source code. 



2 
 

 

History 

Open Source is firmly rooted in the Hacker Ethic [4]. In the late 1950's, MIT's computer 

culture originated the term "hacker", defined today as "a person who enjoys exploring the 

details of programmable systems ". Various members of the Tech Model Railroad Club, 

or (TMRC), formed the nucleus of MIT's Artificial Intelligence Laboratory. These 

individuals were obsessed with the way systems worked. The word hack had long been 

used to describe elaborate college pranks devised by MIT students; however Tech Model 

Railroad Club members used the word to describe a task "imbued with innovation, style, 

and technical virtuosity". A project undertaken not solely to fulfill some constructive 

goal, but with some intense creative interest was called a hack.  

 

In 1983 [4], Richard Stallman, longtime member of the hacker community at the MIT 

Artificial Intelligence Laboratory, announced the GNU project, saying that he had 

become frustrated with the effects of the change in culture of the computer industry and 

its users.  Software development for the GNU operating system began in January 1984, 

and the Free Software Foundation (FSF) was founded in October 1985. An article 

outlining the project and its goals was published in March 1985 titled the GNU 

Manifesto. The manifesto included significant explanation of the GNU philosophy, Free 

Software Definition and "copy left" ideas. 

Open source software 

The term "open source" is alternately used to refer to a philosophy, a way of doing 

business, and a software development methodology. The philosophy behind open source 

is based on the concept of free software. Free software refers not to price but to liberty, or 

the freedom to modify and redistribute source code. This belief is founded on a social 

ideal advocating collaboration through knowledge sharing. 

OSS as defined by the open source Initiative [4] is software that must be distributed 

under a license that guarantees the right to read, redistribute, modify and use the software 

freely. Open source has achieved widespread recognition largely as a result of industry 

resistance to the notion of free software. Many free software practitioners felt that their 



3 
 

business and development practices were not being given fair consideration due to 

misconceptions about the underlying philosophy. The open source label was 

establishedto market the commercial viability of free software, while maintaining the 

same basic approach. Since traditional licenses and fees cannot be used with open-source 

software,  

 

Generally Open source software is developed in voluntarily basis by the global network 

of developers and available free on the internet. It is often described as ‘free’ software, 

which reflects the liberty not the price of the software [5]. The Open Source 

Softwarelicense gives users to following four essential ‘freedoms [6]. 

 

1. to run the program for any purpose, 

2. to study the working of the program, and modify the program to suit specific 

need, 

3. to redistribute copies of the program at no charge or for a free, and 

4. to improve the program, and release the improved modified version 

 

Open source software development 

The  development  of  software [6] can  also  be  broadly  classified  into  Open Source Software 

Development (OSSD)  and   Closed Source Software Development(CSSD). CSSD can be defined 

as the one where, trained software professionals are employed in developing a software product.  

In  many  cases,  these  software  professionals  follow  a  defined  and  documented  software  

development  process.  CSS products are developed for commercial purposes   (for profit)   and   

only   the executableis sold   through   sales team/person to the licensed customers. Also, the 

source code is not released to  public  and  cannot  be  modified  as  most  of  the  

products  would  be  protected  under the copyright license or patents .  Further, CSSD in 

general has a formalized organization and structure.  Some well-known examples   of 

CSS products are   Microsoft Windows, Adobe Acrobat Suite, Oracle solutions, 

Blackboard, etc.  On the other hand, OSSD is oriented   towards   the   joint   

development   of   a   community [6][7]  of   developers.  OSS products are developed by 

volunteers out of interest and any person could be volunteer to play any role in its 



4 
 

development, based on their skills and interest. Usually, the volunteer’s self-assign tasks 

that they would like to perform.  Also,  OSS  is  built  as  an  open source  project  

initiated by an individual/group of people to meet their immediate requirement . The  

people  involved  in  OSS  an d  its  development  share  ideas,  ideologies,   technologies,   

source   code   and   yet   work   independently   in   a  geographically   distributed   

environment   and   are   spread   across   the   world .  They communicate through 

Internet forums, e mails, and informal chats or through any other communicative 

channels.  Also,  majority  of  the  OSS  does  not  have  corporate  owner  or  

management  staffs  to  organize,  direct,  monitor,  and  improve  the  software  

development  practices that are followed for development . Some well-known examples 

of OSS products are Linux, Firefox, Moodle, etc.   

Table 1.1:  comparison between OSSD and CSSD processes 

No Attributes OSSD CSSD 
1 Formalized Organization No Yes 
2 Defined structure No Yes 
3 Follow a  defined and documented development process No Yes 
4 Most often the development happens in ad hoc fashion Yes No 
5 Source code made available to all its user Yes No 
6 Developed for commercial benefits and financial profits No Yes 
7 Wider space for  testing Yes No 
8 Reliable and responsible 24X7 software support No Yes 
9 Up to date technical reports/documents No Yes 
10 Up to date user documents No Yes 
11 Very intuitive and outstanding software design No Yes 
12 Append many new feature to cope competition No Yes 
13 Burdened with license cost No Yes 

 

Software process models 

     A software process comprises the activities, methods, and practices necessary to 

develop a software system. Software process models are abstractions of a particular 

development approach. The purpose of a process model is to reduce complexity of 

understanding by removing unnecessary detail.  

 



5 
 

     Process models can be either prescriptive or descriptive. A prescriptive model 

characterizes what is supposed to be done, whereas a descriptive model captures what is 

open source software is a computer software that has a source code available to the 

general public for use as is or with modifications. This software typically does not require 

a license fee. In short, OSS is a software whose source code may be freely modified and 

redistributed with few restrictions, and which is produced by loosely organized, ad-hoc 

communities consisting of contributors from all over the world who seldom if ever meet 

face-to-face, and who share a strong sense of commitment.  

 

      The basic principle for the OSS development process (OSSDP) is that by sharing 

source code, developers cooperate under a model of systematic peer-review, and take 

advantage of parallel debugging that leads to innovation and rapid advancement.  

 

       To develop the open source software, process flow modeling is crucial like other 

software developments. This software process model describes the overall flow and 

sequence of software project life-cycle activities, including project planning, tracking, 

requirements management, software construction and release. Such models can be used 

to develop more precise and formalized descriptions of software life cycle activities. 

Their power emerges from their utilization of a sufficiently rich notation, syntax, or 

semantics, often suitable for computational processing. 

 

OSS development models 

     There are many theoretical approaches that try to explain the phenomenon of open 

source. But still no generally agreed well defined standard development model for open 

source software exists. Open source processes can vary from project to project. There is 

no single universal approach to Open Source software development. Projects differ a lot 

from each other, and there are differences even in the workings and organizational 

approach of a single project over time. 

      Classifications of different development styles have been made, but there is no 

general consensus on taxonomy of projects. Open Source Software Development is an 



6 
 

orthogonal approach to the development of software systems where much of the 

development activity is openly visible, development artifacts are publicly available over 

the Web, and generally there is no formal project management regime, budget or 

schedule. Open Source Software Development is oriented towards the joint development 

of community of developers and users concomitant with the software system of interest 

as compared with traditional software development and maintenance.     

     The development process of an OSS project consists of the visible phases: These 

phase are problem discovery, Finding volunteers,. Solution identification, Code 

development and testing, Code change review, Code commit and documentation Release 

management 

Table 1.2: Difference between traditional and OSS projects 

Software Development 
Characteristic 

Traditional Closed 
Source Software 

Development 

Open Source Software 
Development 

Code accessibility 
during the development 

Not publicly accessible 
during and after 

development 

Publicly accessible during 
and after  development 

Team member location Usually co-located Geographically dispersed 
Environment/Norm Physical/Hierarchical Virtual/Decentralized 
Team size 
 

More or less fixed Changes frequently, can 
become very large 

Product lifecycle 
 

Traditional Longer, focus on 
continuous releases 

Team member 
characteristic 

Paid employees Volunteers, open 
membership 

Degree of user 
involvement 

Relatively low Very high 

Legal and license issues Few Many 
 

Process models and open source software projects 

     Process models are different methods of accomplishing a software project in an 

organized manner. Each process model has some advantages for specific type of project 

with the available resources and timeline [23]. 



7 
 

In most of the open source projects, requirements are not well defined at the beginning 

[24]. In fact, every release in such a project generates new ideas and specific needs of 

different groups which, in turn, produce updated requirements. For this reason, the open 

source software projects generally use the software development model that is designed 

for rapidly changing environment.  

Software process [25] that “rapid prototyping, incremental and evolutionarydevelopment, 

spiral lifecycle, rapid application development, and, recently, extreme programming and 

the agile software process can be equally applied to proprietary and opensource 

software”. 

However the process models are exclusively framed for proprietary software and they do 

not consider the option for remotely connected developers. 

In the context of project management in OSS paradigm, [8] describe four types of OSS 

development model: 

 High shared conceptualization, high modularity (the high-high case). 

 High shared conceptualization, low modularity (the high-low case). 

 Low shared conceptualization, high modularity (the low-high case). 

 Low shared conceptualization, low modularity (the low-low case). 

High shared conceptualization, high modularity: predefined project plan and large 

number of developers able to work concurrently. The Linux model is an example of high- 

high case. 

High shared conceptualization, low modularity model: Generally have predefined 

project plan and little community efforts. The open source projects initiated by 

commercial company generally falls under this category. 

Low shared conceptualization, high modularity model: Allows community developers 

to develop innovative software. There is no stable project plan and allows large number 

of developers. 

 



8 
 

 

Low shared conceptualization, low modularity model: Used by individual, small 

group or research projects. There is no predefined project plan and few opportunities for 

community developers.  

Both the models shown above miss well defined documented process. So the proposed 

model shall be addressed this gap. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



9 
 

1.2. Statement of the Problem 
 

The Open Source Software Development (OSSD) process model closely resembles the 

modeling process of conventional software development process model where the most 

common element in the development process will be identified by the OSSD process 

model. Lately there have been significant demands for process modeling, which have 

been raised because of the complexities characterized by this OSS process model from 

the previous methods. 

 

In modeling open source software process, there are some problems to handle. 

Concurrency allows development to proceed more rapidly, however there is also some 

associated overhead. With many development activities occurring in parallel, frequent 

merges are necessary to synchronize change. Merges are time consuming, and can result 

in code approval bottlenecks if not properly managed. Open-source projects rely almost 

singularly on peer review for quality control. Other types of testing are uncommon, 

particularly at the design stage. Projects need to build-in as well as test-in quality. Peer 

review is sometimes insufficient for identifying high-level architectural flaws. It is also 

often ineffective at finding obscure flaws. This includes errors that do not happen often 

and are difficult to identify through source inspection. 

 

Furthermore, the efficiency of large-scale peer review is unclear. Some argue that 

although one person will eventually find a bug, many others will nonetheless spend time 

looking for it. Open-source projects also rely heavily on downstream error detection, and 

corrections are more costly to make at the source code level than at the design stage. So 

although this approach appears very effective, it may also be somewhat labor intensive. 
 

Even though, domain experts write code eliminates the possibility of misunderstood 

requirements; however it can also introduce feature creep. Customers with direct access 

to the product often have an increased desire for features. Coupled with the risks 

associated with an evolutionary approach to development, a design can quickly expand or 

wander in conflicting directions as too many quick additions are made to the code base. 



10 
 

Perhaps more importantly, there is no feedback loop to true end users and no imperative 

to create one. There is a noticeable technical bias, as product concepts tend to emphasize 

user activities rather than user behavior. Moreover, when developers are not experienced 

users of the software, they are unlikely to have the necessary expertise or motivation to 

succeed in an open-source project.Although much anecdotal evidence exists for a wide 

range of projects, this information has not been placed within a common framework.  

 

Consequently, the current perception of what constitutes open-source software 

development remains somewhat subjective. Frequently cited practices are neither well 

documented nor universally agreed upon. Without a consistent format for discussion, it is 

difficult for researchers and practitioners alike to attempt to emulate or even assess open-

source projects. It is therefore important to establish at least an introductory process 

model for open source software development. Common practices can be documented and 

used to develop a descriptive model that discusses the methodology in the context of 

contemporary software engineering. By improving the process definition, it becomes 

easier to study the dynamics of open-source software development objectively and 

inmore detail. 

 

     So, the newly process model addresses the gaps of previous models mainly two open 

source challenges or questions, those are documentation the whole process and reusing of 

codes. 

 

 

 

 

 

 

 



11 
 

1.3. Objectives 
 

     In order to tackle the aforementioned problems, general and specific objectives are set 

In the following sub sections.  

1.3.1. General objective 
 

The main aim ofthis research is to access the existing open source software process 

model gaps and  propose  Enhanced Process Model for open source software 

development projects 

1.3.2. Specific objectives 

 

In order to achieve the general objective, several specific activities shall be performed 

sequentially under specific objectives. 

1. Survey the current literatures relating to open-source software process models.  

2. Review open-source projects. 

3. Identify gaps of existing Open Source Software Process Models. 

4. Develop Enhanced Open Source Process Model. 

 

1.4.Research questions  

 

The research attempts to answer these basic questions. 

 

1. What type of challenges do we face using open source software ? 

2. Is there a well-defined process modeling techniques for the development of open 

source software? 

3. Is documentation is important during development of open sources software? 

 

 

 



12 
 

CHAPTER TWO 

LITERATURE REVIEW 
 

2.1. Introduction 
 

The open source software movement has received great attention in the last several years.  

It is often characterized as a fundamentally new way to develop software [7] that poses a 

serious challenge [8][9]. To the commercial software businesses that dominate most 

software markets today.  The challenge is not the sort posed by a new competitor that 

operates according to the same rules but threatens to do it faster, better, cheaper.  The 

OSS challenge is often described as much more fundamental, and goes to the basic 

motivations, economics, market structure, and philosophy of the institutions that develop, 

market, and use software.  

The basic tenets of OSS development are clear enough, although the details can certainly 

be difficult to pin down precisely [10].  OSS, most people would agree, has as its 

underpinning certain legal and pragmatic arrangements 

In the last ten years, open source software (OSS) has attracted the attention of not only 

the practitioner, but also the business and the research communities. In short, OSS is a 

software whose source code may be freely modified and redistributed with few 

restrictions, and which is produced by loosely organized, ad-hoc communities consisting 

of contributors from all over the world who seldom if ever meet face-to-face, and who 

share a strong sense of commitment [11]. The basic principle for the OSS development 

process (OSSDP) is that by sharing source code, developers cooperate under a model of 

systematic peer-review, and take advantage of parallel debugging that leads to innovation 

and rapid advancement [12].The most distinctive features of the open source system are 

identical to those that distinguish the proprietary model: the development structure, the 

licensing scheme and its relationship to intellectual property rights, and the policy 

treatment of the source code [11].  



13 
 

 

So a software process model can be defined as a simplified description of software 

process that presents one view of a process and may also include activities that are part of 

software process and products, along with the constraints that apply to the process and 

roles of the people involved [12]. 

 

There are many approaches which try to explain the development of the OSS, but still no 

general approach is being agreed.  

 

2.2. Existing OSS development process models 
 

Several researchers have proposed OSS process models derived from analyses of 

successful open source projects [13]. Opinions differ as to the stages that comprise a 

typical open source development project. However, regardless of the open source life 

cycle model that may be subscribed to, the OSSD paradigm demonstrates several 

common attributes. 

1. parallel development and peer review 

2. prompt feedback to user and developer contributions 

3. parallel debugging 

4. user involvement, and rapid release times   

5. highly talented developers 

 

1. Parallel development and peer review 

Members of the open source process model developers review the code and the process, 

provide comments and feedbacks to improve the quality and functionality and do early 

test to catch bugs and provide enhancements as early as possible in the development 

cycle. These results, high quality process model. But , there is a a challenge of organizing 

ideas of  all members and finalizing the process as scheduled.  

 



14 
 

2. Prompt feedback to user and developer contributions  

During releasing each code and process, it is tested by the community who discus 

through mailing lists and discussions boards and provide feedback, bug reports and fixes 

through the project mailing list. The given feedback is considered by the developers. The 

cycle is done repeatedly throughout the process development until project members feel 

that the implementation is stable enough. This improves the quality of process model. But 

asa limitation, selecting better codes and process among many alternatives is very 

difficult. So that additional time and effort is needed to the whole process. 

3. Parallel debugging  

With this bug fixing techniques, all the members are downloading the codes and run the 

test individually. All members find a failing test and try to fix the bugs according to their 

skill. Finally all members open pull request and wait for approvals or feedbacks from the 

coordinator for merging. The challenge for parallel debugging is, it takes time and 

difficult to select the better ones among many alternatives that will satisfy customer need.  

4. User involvement, and rapid release times   

     In developing the open software, it does not wait to have a fully working version to 

make the code pubic and release a version of the software.  Rather, release early and 

release often leads to higher quality software because of peer review and the large base of 

users who are using and testing the software. Many people looking at the code benefits 

that, the code is reviewed for adherence to coding style; fragile or inflexible code can also 

be improved because of thee reviewers. But it also consumes high effort and time which 

is considered as drawbacks.  

 

 

 

 



15 
 

5. Highly talented developers 

     In developing open source software, highly talented developers are motivated to join 

the project and give their contributions. This technique gives opportunity to develop 

better codes and process. But, selecting the better code among many talented developers 

will be very challenging.  

6. highly talented develop``ers 

Highly talented developers are participating in open source software developments. due 

to this , high quality software will be developed. So that needs of customers will be 

achieved. In the other hand, selection of the appropriate code will be very difficult. This 

takes time and effort. 

 

2.2.1. Process models for OSS 

 

1. United States Department of Defense (DoD) Model 

 

The United States Department of Defense (DoD) [14] [15].Proposed a process model for 

the development of the OSS. The main focus of the model is on the contributor roles who 

participate in the development process of the OSS. [10]. 

 

This OSS process flow life cycle consist of the following.  

Developer: Developers consist of the persons who imitated and contributed majorly in 

the development of the OSS. The developer is responsible for the actual working of the 

OSS in right and proper manner. 

 

Trusted Developer: Trusted developers consist of the persons who contribute in the 

development of the OSS continuously and they gained the trust of the initiators through 

their continues involvement in the development process and became the part of the core 

developer community. Trusted developers are allowed to make updating and changes in 

the trusted repository directly.  



16 
 

 

Trusted Repository: Repository means the data house. The repository in OSS 

development specifies the house from where all the information related to the OSS can be 

retrieved. The user and trusted developers can access the repository directly or through 

the distributor. The trusted repository specify the space from where user or trusted 

developer can get the official version of the software and get other related information 

such as bugs report, change log, documentation etc.  

 

Distributor: Distributor is the persons who have the copy of developed OSS and they are 

using it and perform other task such as modify, integrate, testing, configuration etc.  

 

User:User is the normal person who uses the OSS. User can be categorized as Passive 

and Active user. The Passive users are those who download the software for use, they 

never participate in development. The Active user participate in the development process 

by performing task as finding bug, giving review about the OSS etc.  

 

In this development process the flow of the source code is shown as developer - trusted 

developer - trusted repository - distributor - user i.e. it follows the top-down approach, 

whereas feedback/bug report use bottom-up approach. It flows from user - distributor - 

trusted repository- trusted developer - developer. 

 

 

 

 

 

 

 

 

 

 

Developer 

Trusted Developer 

Trusted repository 

Distributer 

User 

Bug reports 

Source code 

Figure 2.1: Development Model Propose by DoD 



17 
 

 

Major Features of DoD model 

1. OSS is developed by collaborative process.  

2. Most OSS projects have some web location as “trusted repository” where people 

canget the “official” version of the program or software also some related important 

information (documentation, bug report system, mailing lists, etc.). Users or 

developers can get the software directly from the trusted repository, or get it through 

distributors. Distributors are who acquire it and provide additional value such as 

integration with other components, testing, special configuration, support, and so on. 

3. The trusted developers are developers who are allowed to modify the trusted 

repository directly. At project start, the project creators or initiator are mainly 

thetrusted developers and they determine who else may become a trusted developer of 

t is initial trusted repository. All other developers can improve the software by 

changing local copies and also can post their versions to the internet. But they must 

submit their changes to a trusted developer to update the trusted repository.  

4. Users can send bug reports to the distributor or trusted repository and can be taken 

care accordingly 

 

2. Cathedral-Bazar  life cycle model 

 

In an OSS development process model, the complementary events i.e. Cathedral (closed 

style) and Bazaar (open style) are considered to occur in the same OSS project [13].Many 

successful OSS projects consist both of these modeling style during their development. 

The proposed development model for OSS consists of mainly three phases.  

 

1. Cathedral Phase  

2. Transition Phase  

3. Bazaar Phase  

 



18 
 

Their process modeling starts with in Cathedral phase where cathedral building 

development style is followed. In the cathedral phase, small group of individual 

developers initiate the development in the closed environment with no outside audience 

or participant. It consists the project author, core developer, and project manager. Once 

the software developer gained confidence in the development, they publish their work on 

internet. This change phase is called as transition phase. Transition phase acts as link 

between cathedral and bazaar phases. Transition phase is initiated only when the design is 

stable and modular, original author lose interest in the Individual development process 

and a prototype of software are ready for use. In Bazaar phase the bazaar development 

style is followed, where the development actually proceed in the distributed environment. 

The interested people join the development process and perform development, 

maintenance,bug reporting, bug fixing etc.tasks. 

The various phases of the development model proposed by [13] are shown below.   

 

Stable Modular 

Design 

 

Interest 

Prototype 

Transition phase 

 

 

 

Limitations of the model  

     The original idea is developed by core developers which are small in number.  

Although, final codes will be reviewed by peers, needs of customer could not be 

addressed fully. In addition to this, the model will not be accomplished in specified time 

frame, which brings un satisfaction for the users. 

 
 
 
 

Original  

Idea 

Project 

Author 

Core 

Developer 
 

Peer reviews 

Parallel 

perfective and 

corrective 

maintenance 

Community 

Figure 2.2: OSS Development process Lifecycle 



19 
 

3. Comparative life cycle model  

The comparative model [14], proposed the development life cycle of the OSS 

thatincludes all the elements of the classical SDLC used for the development of the 

closed or commercial softwares. According to this process model, software requirements 

are based on the need of the developers who develop the OSS in the analysis phase. The 

final requirements are negotiated on the internet. The design phase in the development of 

OSS is not performed formally [14]. Design issues are not written anywhere, and not 

made visible to  everyone, because it may limit the development process. Less emphasis 

is done on the design phase. Implementation and coding are the main concerns of the 

development process. Various users participate in the development of OSS. They 

communicate with each other informally and send change request, feedbacks, developed 

code. Testing of OSS is considered to be more powerful as compared to the testing of 

traditional software.Because the number of the user available to test the OSS is very large 

as compared to the traditional software testing. These tester or user sends the feedbacks 

in the form of reviews, bug report, change request. The testing which is performed in the 

OSS development is un structured. The disadvantages of unstructured testing are covered 

by having the uncounted stranger, that tests the OSS. It presents all the differences that 

OSS life cycle has as compare to the SDLC, but fails to suggest an appropriate model that 

analyses this new process [15]. 

 

Limitations of the model 

Even though the model focuses mainly coding and implementation, which helps to 

develop the model quickly. But requirements of the software are based on the developers, 

unstructured testing and large number of users available to test the OSS, makes the model 

difficult to attain customers need and complete the model through specified time. 

 

 

 

 

 

 



20 
 

4. Organizational life cycle model 

 

This model is a kind of organizational method [16] which consists of three phases. Each 

phase consist of different set of activities. 

 

1. Project Initiation 

2. Going  Open 

3. Project Growth, Stability or Decline 

 

1. Project initiation phase activities 

 

a) The project is initiated and composed of all the initial stages  

b)  The development of OSS is initiated by the single or the group of developer, which 

form the core developer of the OSS development. 

c) The modular approach is followed for the development of the OSS. 

 

2. Going open phase activities 

 

a) The project founder have a choice to choose the OSS license such that it ensure that 

future development of the OSS take place in good manner and ensure that sufficient 

amount of the original requirements are solved. 

b) Technologies and websites are to be chosen as the way to share code and develop 

development community. 

c)  Issues like version management, problem tracking are also considered. 

d) Developing operational design to provide some kind of project management 

hierarchies. 

 

 

 

 

 

 



21 
 

3. Project growth, stability or decline phase activities. 

 

a) Decide on issues related to the growth of OSS, weather it is growing or decline. 

b) If the project is designed in such a way that, it can attract most of the developers 

and global users to use the software and participate in the future development, 

testing, and documentation. [17].  

Limitation of the model 

     As far as the initial stage is initiated by a single or group of developers, the whole 

process is guided by single or few groups. This leads less quality of the software being 

developed. Here testing and documentation will be better due to less involvement of 

users. In addition to this, the model will help to accomplish the model in specified time. 

5. Maturity plus life cycle model 

This model proposed similar kind of open source process modeling with slight variation 

of organizational model [17].The model adds one more phase i.e. the maturity phase at 

last.  The maturity phase specifies that, the OSS gained a critical mass in terms of number 

of users, developers. Here, the software reached the stage where it is said to be matured 

enough due to its popularity, less bug rate, less changes, working accurately most of the 

time. The life cycle proposed by others, consider managerial aspects and organizational 

structure of OSS, but do not provide task related analysis of OSS development. [17][18]. 

 

Limitation of the model 

 

This model adds the maturity phase from organizational model which gives opportunity 

for users to enhance the model. This gives the model a chance of being quality. But more 

time and great effort is needed to accomplish th model. 

 

 

 

 

 



22 
 

6. Managerial activity focusing life cycle  model 

This model Consist of these phases. 

1. Roles and responsibilities 

2. Identifying work to be done 

3. Assigning and performing development work  

4. Pre-release testing  

5. Inspections  

6. Managing releases  

 

The model considers managerial activities (developer management and the work to be 

done), but not product-related activities. Itconsiders more task-related issues than the 

above model.It assumed that, some kind of prototype is already exists for the software. 

The proposed model at some level provides support for all the phases of traditional 

SDLC. The model focuses on the planning phase of the SDLC. Other phases like, design 

and analysis are not considered adequately. [18]. 

 

Limitation of the model 

This model focuses mainly planning phase. So that it lacks user involvements which is 
back bone of the quality of the software. 

 

7. Licensing and version control model 

 

This model consists Open source licensing and version control. The proposed life cycle 

for the development of OSS is considered to start with the personal itch to the individual 

or group of persons. The initiator looks for the software which can solve its personal 

needs. If no existing project is found then initiation of the new project take place, 

otherwise the initiator will join the existing project. In both  cases mailing lists, bulletin 

boards, CVS version control are used for communication and controlling the 

development of the software. User can also participate in writing of documentations, 

generating patches to fix bugs, vote or chose for the OSS license, request changes, 

modifications, accept patches for changes and modification. Once the software gone 



23 
 

through all these, software official version is released and process continues until 

software gain certain maturity [20].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A personal itch 

Looks   for any similar projects 

Initiate a project Join that project 

Use mailing list for announcement and bug tracking  

CVS version control 

Write document and manuals  

Decide license model 

Do little document writing  

Accept patches and modifications (vote or dictatorship) 

Vote for a license model  

Release official version in the foreseeable future 

Figure 2.3:licensing and version control model [20] 

 



24 
 

 

Limitation of the model  
     User involvement is high. So that good quality of software will be achieved. In 

addition to this, users are involved in writing documentations which is not feasible in 

other models. But the time needed to accomplish the model is very high and difficult to 

manage it because of complexities of the process. 

 
8. Product-task related life cycle model 

This process flow model is a refinement of the above model. it describes the product or 

task related activities. This model is widely accepted as a frame work for the OSS 

development.  

 

Various phases or activities which are performed are as follows [21]. 

 

Code: Coding of the software is done in this phase. At the start of the software only 

person or individual group of person start coding. In OSS, the code is developed by well 

talented developers and code is made available for review and improvement.  

 

Review: In This phase the developed code is reviewed. The independent peer review is 

the strength of this process. 

 

Pre-Commit test: The reviewed code is then passed through unstructured testing phase. 

The developed code is tested to find errors. The commit operation is performed on the 

code which is found necessary and accurate, un-necessary code is rejected. This phase is 

considered most important for the development process because if not performed 

properly it may lead to failure of the OSS.  

 

Development release: After pre-commit test if the software is ready for development 

release it is done. 

 



25 
 

Parallel debugging: Once the development is released, the code is exposed to large 

number of contributors or user. They perform rigorous debugging to find all the bugs and 

report these bug to the core developers.  

 

Production release: Stable development release is then released as the Production 

version. 

 

 
Figure 2.4:  product task related model 

 

Limitation of the model 

     This model describes the product or task related activities like coding, reviewing, pre 
commit testing, development releasing, parallel debugging and product releasing 
consequently. This makes the developed software will be high in quality and user 
involvements. But time and effort is highly needed and documentation is also very 
difficult. 

 

9. Expanding Product-task related life cycle model 

The model expands the above process flow model and includes the aspects of previous 

models. It encapsulates the classical SDLC model phases. This model replaces the initial 

code phase of Jorgensen model with initiation phase. Initiation phase can be applied to 

any level of project.  

 

This includes code development which is either done by the founder of the project or by 

the contributor of the project. The initiation phases are the next move to the cycle of 

review and contribution. In this various developer can contribute and review the code. 



26 
 

Next it moves to the Pre-commit test phase where the informal testing of the software is 

performed. It then point to the development and parallel debugging cycle. In this the 

developed code is made ready for development release and parallel debugging is 

performed on the released project by the various developers and the users.  

 

The last phase is the Production phase; in this if the developed released code is found 

accurate and stable, the production release is done. The production released software can 

further move to initiation phase for further development. The OSS development process 

is assumed to follow this cycle and perform all these activates again and again until the 

OSS gain Maturity. It is also argued that the OSS development can never reach to end it 

is an ongoing and continuous process. [22].  

 

Limitations of the model  

The model  refines the above mentioned process and the final  production  released  

software  can  further  move  to  Initiation  phase  for further  development. This cycle   

Continues again and again until the OSS gain Maturity. This needs more and more effort 

and time. In addition coordination and documentation will be very difficult.  

10. Scacchi’s life cycle model 

This model considers the cyclic nature of the development process, with centralized role 

of experience sharing. All the phases are centrally managed by experience. The various 

activities which are performed are Assert requirement design, Develop OSS code, and 

Mange configuration, Download and install, End user, and communicate experience. 

[23]. 

 

 

 

 

 

 

 



27 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Limitation of the model  

Scacchi model considers the cyclic nature of the development process, with centralized 

role of experience sharing. This centralization hinders individual talents in the 

development of the software development. This minimizes the quality of the software. 

 

11. Gilliam’s life cycle model 

The proposed model is considered to have the cyclic nature. Figure 2.7 also depicts 

various activities such as making initial release available on the internet, find bugs, add 

features, contribute bug fixing, incorporating best features and patches, distribute the new 

releases which are performed in various phases of the model. [24].  

 

 

 

 

 

Download and  

Install 

End-use 

Develop OSS  

code 

Assert Requirements 
Design 

Manage  

configuration  

Communicate  

experience 

Read, Analyze and  

Redesign 

Figure 2.5: Scacchi Process flow 



28 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Gilliam model 

 

 

Limitation of the model 

As far as various activities such as making initial release, finding bugs, adding features, 

and bug fixing are cyclically performed, great effort and time  is needed and difficult to 

manage the whole process. 

 

Generally, software process modeling has some features. In contrast to software life cycle 

models, software process models often represent a networked sequence of activities, 

objects, transformations, and events that embody strategies for accomplishing software 

evolution. Such models can be used to develop more precise and formalized descriptions 

Project management 

Makes initial release available on the Internet 

Project management  

Incorporate best features 

Distribute new official releases   

Project management  

Incorporate best features  

 

User’s debuggers 

Find bugs  

Add features  

Development team 

Find bugs and add features  

Via 
CVS 

Via mailing 
lists  

Figure 2.6:  Gilliam model 



29 
 

of software life cycle activities. Their power emerges from their utilization of a 

sufficiently rich notation, syntax, or semantics, often suitable for computational 

processing. [25]. A process model constitute four important process elements namely 

activity, products, roles, and tools. Activity consists of one or more process steps, which 

may run in parallel with other process steps. Products are artifacts which are normally 

under configuration control. Roles describe the responsibility and rights of the human 

who performs the process steps or who is in charge of the human agents. It should be 

noted that a person may play more than one role and a role may be associated with 

several people. Tools covers any tools used in the production of the software including 

compilers, debuggers, editors and even CASE tools. 

 

There are several modeling techniques that exist in modeling the OSSD process. These 

modeling techniques provide different methods in capturing the OSSD process. The 

modeling techniques can be chosen based on their suitability to the user needs and user 

should know which techniques do provide the needed requirement. [26].  

 
Table  2.1: Comparison between various OSS Models with their characteristics 

Process 
models   

Phases  Methodology  Advantages  Disadvantage
s  

Cathedral 
bazar model 

 Cathedral  
 Transition  
 Bazaar  

 Development of 
every OSS start in 
cathedral phase and 
then transition is 
done to Bazaar 
Phase 

 Simple  
 Generalized view of 

OSS development 
life cycle  

 Does not 
specify the 
parameters for 
the transition 

Comparative  
model 

 Analysis 
Design  

 Coding 
Implementation  

 Support  

 Consider all the 
phases of SDLC  

 Main focus is on 
coding and 
implementation  

 

 Presents all the 
differences that OSS 
life cycle has as 
compare to the SDLC  

 Fails to 
suggest an 
appropriate 
model that 
analyses this 
new process  

Organization
al life cycle 
model 

 Project 
Initiation Going 
“Open”  

 Project Growth, 
Stability or 
Decline  

 The project is made 
open to the outside 
world by sharing or 
publishing the 
work on internet.   

 Project growth is 
accessed and 
categorized to 
growing,stable. or 
decline  

 Organizational 
Model  

 The modular 
approach is followed 
for the development 
of the OSS  

 Each phase is 
characterized by 
different set of 
activities  

 Do not 
considered the 
task-related 
analysis of 
OSSD process  



30 
 

Maturity 
plus model 

 ProjectInitiation 
Going “Open”  

 Project Growth, 
Stability or 
Decline  

 Maturity  

 project reaches 
critical mass in 
terms of the 
numbers of users 
and developers it 
can support .  

 Consider managerial 
aspects and 
organizational 
structure of OSS  

 
 

 Do not 
considered the 
task-related 
analysis of 
OSSD process  

Managerial 
activity 
focusing 
model 

 Rolesand 
Responsibilities 
Identifying 
work to be done  

 Assigning and 
performing 
development 
work  

 Pre-release 
testing 
Inspections 
Managing 
releases  

 all the activities 
and phases which 
are defined has 
main focus on the 
managerial 
activities 

 

 Consider decision 
making framework 
and task related 
project phases.  

 Consider managerial 
activities  

 More emphasis is on 
planning phase of 
life cycle  

 Do not 
considered 
product-
related 
activities  

 Fail to explain 
where design 
and analysis 
take place in 
this model  

Licensing 
and version 
control 
model 

 Personal Itch  
 Look for 

similar project  
 Initiate  
 Version Control  
 Documentation  
 Decide OSS 

license  
 Patch 

generation  
 Releasing  

 Specifies the 
process how the 
generation of the 
OSS take place by 
performing all 
these activities 
along with 
generation of 
licensing and 
version controlling.  

 Consider open source 
licensing and version 
control.  

 Participation in the 
development is open 
for any-one  

 

 Does not 
specify the 
how and 
where 
designing, 
testing, and 
planning take 
place  

Product-
task related 
model 
 

 Code  
 Review  
 Pre-Commit 

Test  
 Development  
 Release  
 Parallel  
 Debugging  
 Production 

Release  

 Perform all 
activities in a cycle 
i.e. the 
development 
precede by 
performing these 
activities again and 
again until the 
maturity level of 
the OSS is not 
reached.  

 Task- related Model  
 Widely accepted at 

micro and macro 
level as a framework 
for OSS development  

 Does not 
specify where 
or how the 
planning, 
analysis, and 
design take 
plac  

Expanding 

Product-

task related 

model  

 

 Initiation  
 Contribution 

and Review  
 Pre-Commit 

Test  
 Development 

and Parallel 
Debugging  

 Production  

 All these phases 
are performed 
repeatedly until 
OSS again 
Maturity  

 Combination of task-
related, 
organizational and 
comparative models  

.  
 

 Do not 
specifies the 
version 
control 
mechanism of 
OSS 
development  



31 
 

Scacchi’s  
model 

 Assert 
requirement  

 Design,  
 Develop OSS 

code,  
 Mange 

configuration,  
 Download and 

install,  
 End user  

 Specifies the 
development 
process by 
performing all 
these activities in 
cyclic manner.  

 Consider the cyclic 
nature of the 
development process  

 Centralized role of 
experience sharing  

 Do not 
specify the 
design, 
analysis, 
planning 
phases of the 
development 
life cycle.  

Gilliam’s  
model 

 Project 
Management  

 Development 
Team  

 User/debugger  
 
 
 

 Find bugs, add 
features, contribute 
bug fixing, 
incorporating best 
features and 
patches, distribute 
the new releases 
which are 
performed in 
various phases of 
the model.  

 

 Cyclic nature  
 Parallel Debugging  

 Do not 
specify the, 
design, 
analysis, 
planning 
phases of the 
development 
life cycle.  

 

Eclipse   Pre-proposal  
 Proposal  
 Incubation  
 Mature  
 Top - Level  
 Archived  

 Various phases 
which are used for 
development of 
OSS are performed 
repeatedly.  

 

 Projects are managed 
by a hierarchy named 
the Project 
Leadership Chain, 
consisting of the 
Project Management 
Committee (PMC),.  

 Various type of 
reviews are 
performed  

 Somehow 
implements 
restriction on 
the 
development 
process.  

 At critical 
mass situation 
it is difficult 
to perform 
reviews and 
manage.  

 

 

 

 

 

 

 

 

 

 

 

 



32 
 

2.2.2. Characteristics of most OSS development models 
 

1. Interwoven development cycle 

The open source development model is characterized by a series of interwoven processes 

[26] that continually improve code quality, instead of a strictly linear progression to a 

release. Unlike the big reveal that typically accompanies the traditional software 

development model; the open source model encourages continuous and independent 

feature development.  This enables new features to be integrated as they are ready, which 

in turn allows other developers to build upon them more quickly and produce a more 

competitive product.  

2. Release early and often 

Release early and often [27]results in highly iterative development, and minimizes the 

amount of change between development releases, making regressions and breakages 

easier to diagnose. This release philosophy allows for continuous peer review, where all 

members of the community have the opportunity to comment and offer suggestions and 

bug fixes. It also encourages small, incremental changes that are easier to understand and 

test while developers are actively engaged, rather than being discovered during a separate 

final test cycle. A side benefit is that the code is frequently reviewed for adherence to 

coding style, and fragile or inflexible code can be found and improved early in the 

development cycle.  

3. Peer review 

The open source development process emphasizes peer review throughout the entire 

development life-cycle.  Developers are expected to submit their code to project mailing 

lists for periodic public peer review, particularly when a feature achieves a development 

milestone.  This helps to ensure that others outside of the development team are aware of 

the changes, and can provide feedback before the design is final and implementation 

complete.  Other members of the open source project review the code, provide comments 

and feedback to improve the quality and functionality, and test to catch bugs and provide 

enhancements as early as possible in the development cycle. When a feature is complete 



33 
 

and ready to be considered for integration, the project maintainer also provides a level of 

review prior to accepting the code.  By the time code is integrated into the main product, 

it has undergone a number of detailed inspections by others outside of the development 

team.  The result is improved, higher quality code. 

2.2.3. Conclusion   
 
The development of open source software is accomplished by following various life cycle 

models. Some of the best known models used for the development of open source 

software are specified above. It is found that the development life cycle of open source 

software is very much different from that of traditional closed or commercial software.  

     Most of traditional life cycle models are not efficient to be used for the development 

of open source software which follows the static development approach. The above 

models found to be differing by the methodology, number of phases and the feature they 

provide. Each research proposed their models on the basis of their own requirements and 

specifications; there is no standard and single quality approach found existing which can 

be found applicable for development of all open source software. So designing 

generalized and standardized process model will be very necessary. 

 
 

 

 

 

 

 

 

 
 



34 
 

CHAPTER THREE 

METHODOLOGY 
 

 

3.1. Introduction 
 

     To design a new process model, more than forty related researches are reviewed. 

Among those papers, very few researches are focusing on process models. Almost all 

papers have common challenges or gaps of reusing the code, well organized process 

model and documentation of the process. So, the paper uses a design science 

methodology. An artifact of designing the process will be modeled. To design the model 

the paper systematically reviews those research papers thematically. In addition to this, 

some questionnaire are prepared for software developers. With those methodologies the 

paper analyzes gap and proposed new model. 

3.2. Research design 

The research design is qualitative particularly design research methodology. The purpose 

of the design is to formulate a well-defined process model for open source software 

development. 

3.3. Sources of data 

To get valid and reliable data, the use of appropriate data source is very important. 

Therefore the source of data for this research includes primary and secondary data 

sources. The primary data were collected from software developers from Ethiopia. They 

were considered as a primary source because of either direct involvement in the software 

development process modeling. The secondary source of the data was documents related 

to open source software process modeling.  

The data was extracted from these sources through both quantitative and qualitative 

methods. Questionnaires 



35 
 

 

3.4. Sampling  technique 

The sample is selected randomly from software developers in Ethiopia. All the samples 

are selected from Addis Ababa because of the enterprises are well established when we 

compared to others found in outside Addis Ababa. 

3.5. Sample size 

It is assumed that, most software developers have similar background and experience. So 

that small sample size would represent the large number software developers.  So that  it 

incorporates five software developing enterprises in Ethiopia. The enterprise is selected 

randomly.  Those are:Gebeya Inc  found in Addis Ababa at Bole sub city  wereda  2 , 

Sina building 2nd floor. Minab It solutionfound at Gene Commercial Center5th Floor 

Office No.517 Megenagha, Addis Ababa. Zala tech plc found in AddisAbaba at Bole sub 

city Cameroon road ,Alpha It solution found Addis Ababa, Piasa, ,Arada sub City , 

Iceaddis, Addis Ababa, Bole sub city, Bole Medhanialem , Zewudu Building , 5th floor, 

Apposit LLC and TABY Engineering PLC. Found at Addis Ababa, Bole Sub City at 

Cameroon Road , Both the enterprises are mainly organized for developments of web 

sites, graphic designs, customer software development and the like . 

3.6. Instruments of data collection 

To collect data for the study, different data were employed. These were questionnaire; and 

document analysis of data gathering tool. 

Questionnaire was conducted for software developers in Ethiopia particularly in Addis 

Ababa. In addition to this, different types of documents written on open software process 

modeling was analyzed 

 

 

 



36 
 

3.7. Technique of Sampling 

The sample is selected randomly from software developers in Ethiopia. All the samples 

are selected from Addis Ababa because of the enterprises are well established when we 

compared to others found in outside Addis Ababa. 

3.8.Data collection  methods 

     In order to gain a better insight into possibilities for developing process model for 

open software, thematic analysis research is conducted systematically. Documents are 

reviewed some related questions are prepared and answered through email and telephone. 

In addition to this, questioners are prepared and given to some software developers and 

then analysed.  

3.9.Method of analysis 
 

The reviewed data, the questioner and the web interviewee are transcribed and thematic 

analysis was conducted. Before suggesting the new process model, data is organized 

systematically. 

Around ten professionals give response to the questionnaire, according to the responses, 

documentation problem and well organised modelling are great problems in open source 

software developments. 

3.10. Method of Data Analysis 
 

     Qualitative method of data analysis was applied for the data obtained from questions 

and document analysis. On the whole, the results of the study were presented, analyzed 

and summarized accordingly. This study aimed at developing enhanced open source 

software process modeling.  

. 
 

 

 



37 
 

CHAPTER FOUR 

PROPOSED ENHANCED OSS PROCESS MODELING 
 

4.1. Introduction 

The existing open Source software offers significant benefits, compared to typical 

commercial products. Commercial products often stress on advancement and updating of 

visible features for getting marketing advantages. It is very difficult to measure quality 

attributes such as stability, security, reliability etc. Commercial software put notices 

basically on the quality of mostly used features. Whereas Open Source software 

developing community consists of very bright, very motivated developers, who are 

mostly unpaid but are much disciplined to their work. In addition to that, all the users of 

Open Source software have access to the source code of the software and debugging 

tools. For this reason, the users can suggest the developers about the bugs by feedback or 

they can fix the bugs if possible by modifying the source code and  even can enhance the 

software by providing  actual changes to the source code. Because of the availability of 

source code and right to modify the code by users, sometimes the quality of software 

produced by the Open Source software development community exceeds the quality of 

same type software produced by purely commercial organizations. 

As Open Source Software is not made by a group of people under a common roof, for 

this the open source software does not follow the conventional model like waterfall, 

iterative enhancement, spiral etc. Even there is no standard open source development 

model also. Some open source developers use some model as their own.  

     The paper has been going to discussed some of those models and have proposed a new 

model called open agile incremental model, which can be used for open source software 

development.   

.  The proposed model combines the conventional software process modeling and open 

source software process modeling techniques together. Starting from feasibility study of 



38 
 

the software to the dissemination stage, the model tries to address the necessary issues 

concerning with the software process modeling. All the necessary stages of software 

process model are included in this proposed model 

4.2.Presentation, analysis and interpretation of data 

Table 4.1: Responses of software developers 

Questionnaires Company Name   
Alpha 

IT 
Soluti

on 

Gasha 
consul

ting 

Atlantic 
IT 

Solutio
ns 

Zala 
tech plc 

 

WEBS
PRIX 

 

Are you using open source software for your 

different purpose? 

 

Yes yes yes no yes 

Process modeling is very important for developing 
open source software 

agree agree agree agree agree 

Is there any process model for open source software 

that you know before? 

 

I don’t 
know 

I don’t 
know 

I don’t 
know 

I don’t 
know 

I don’t 
know 

 documentation  necessary for open source software’s agree agree agree agree agree 
` 

 

Sample responses of three software developers    

1. What type of challenges do we face during using open source software? 

Alpha IT Solution 

 Software version consistency 

 no maintenance or support is included for free 

 No vendor releasing updates 

 Testing  

 

 

 

 



39 
 

Gasha consulting  

 technical support 

 there is no company that is willing to support us for free 

 how the software works  and modify --- from public internet forums only 

which is not comfortable 

Atlantic IT Solutions 

 lack of support in the local context 

 lack of some of reference materials 

2. Is there a well-defined process modelling technique for the development of open 
source software 

Alpha IT Solution 

 No, but we use platforms for community use  

Gasha consulting 

 We don’t believe there is one well-defined process modelling technique 

Atlantic It solution  

No, because: 

 lack of interest in software process modeling 
 open source software projects are ingrained in the hacker culture and 

represents the antithesis of software engineering 
 

3. Process modelling is necessary during open source software development 

Alpha IT Solution 

  Process modelling is important in open source software. But, open source 

software by its nature cannot model a specific organization’s business process 

 it is important to document whatever process model the project implements so 
that the users of that software understand the business rules being enforced. 

 



40 
 

Gasha consulting  

 Yes, it will provide a clear outline for implementation as well as code refactoring 

for software developer 

Atlantic IT Solutions 

 Sharing source code, developers cooperate under a model of systematic peer-

review, and take advantage of parallel debugging that leads to innovation and 

rapid advancement  

 Today, Linux and Apache Server are used in the Internet’s public servers. This 

demonstrates that process modeling can produce software of high quality and 

functionality.  

 Other success stories include Perl, Python and PHP programming languages, 

sendmail mail handler, Mozilla browser, MySQL database server, Eclipse and Net 

Beans Java integrated development environments.  

 

4. What is your opinion using process modelling during software developments? 

Alpha IT Solution 

 Most software projects are moving towards the agile software development 

processes. Agile process emphasizes communication and collaboration over 

exhaustive documentation (which must occur in order to properly model a 

business’s entire process).  

 Process modelling will help increase business efficiency more than it directly 

helps software development. The better the business process is, the better the 

software will be as 

Gasha Consulting 

 It’s a good practice that could save time and resources to outline the business logic 

mapped out through the processes for clearer understanding and accurate 

implementation strategy. 



41 
 

Atlantic IT Solutions 

 Developers who want to join an open source software project must discover its 

underlying development process by using public information sources on the Web. 

 These sources include process enactment information such as informal task 

prescriptions, community and information structure, work roles, project and 

product development histories, electronic messages and communications patterns 

among project participants.   

 

5. Why process modelling of open source software is very important? What is your 

opinion 

Alpha IT Solution 

 Process modelling will help increase business efficiency more than it directly 

helps software development. The better the business process is, the better the 

software will be as well 

Gasha consulting 

 To help a smoother adoption of the platform to a set of use cases with a wider 

range. 

 helps to set operation standard of the platform which are usually referenced in 

deployment and refactor documentation. 

Atlantic IT Solutions 

 Developers who want to join an open source software project must discover its 

underlying development process by using public information sources on the Web..   

 

 

 

 



42 
 

6. Is documentation is important during development of open source software? 

 

Alpha IT Solution 

 Most software projects are moving towards the agile software development 

processes. Agile process emphasizes communication and collaboration over 

exhaustive documentation (which must occur in order to properly model a 

business’s entire process).  

 Process modelling will help increase business efficiency more than it directly 

helps software development. The better the business process is, the better the 

software will be as 

Gasha consulting 

 Yes it is important but exhaustive documentation using the Waterfall methodology 

is no longer considered useful 

 Process models for both specific and standard uses are defined to help a smoother 

adoption of the platform to a set of use cases with a wider range. Process 

modelling helps to set operation standard of the platform which are usually 

referenced in deployment and refactor documentation. 

Atlantic IT Solutions 

 Developers who want to join an open source software project must discover 

its underlying development process by using public information sources on 

the Web. 

 These sources include process enactment information such as informal task 

prescriptions, community and information structure, work roles, project and 

product development histories, electronic messages and communications 

patterns among project participants.   

7. Do you agree that, well defined process modelling of open source software   is 

mandatory?— 

 



43 
 

Alpha IT Solution 

 Some documentation is important during software development. However, 

exhaustive documentation using the Waterfall methodology is no longer 

considered useful. Using the Agile/Scrum software development process, which is 

the preferred methodology nowadays, documentation is minimal (it is replaced 

with collaboration with the business analysts/product owners). So, documentation 

is important for sure, but extensive documentation that sooner or later becomes 

outdated is not recommended. - 

Gasha consulting 

 Yes, it will help clarifying the implementation or modification process both after 

and during deployment 

Atlantic IT Solutions 

 No.  

 The Huge’s like Apache, Mozilla, Net Beans, or any other open source projects, 
provide documents on their Web portals that explicitly and precisely describe what 
development processes are employed 
 

8. In your view, is reusing of codes in open source software development is easy? Why? 

Alpha IT Solution 

 This really depends on the open source software and the quality of the design. 

Some open source projects produce quality code that can be easily reused, some do 

not. 

Gasha consulting 

 Yes, if one follows the appropriate guidelines of use and implementation of logics 

it should fairly understandable as most open source software products has a 

community around them. 

 

 

 

 



44 
 

Atlantic IT Solutions 

 Not that easy, everything may seem or work well. Then when you want to modify 

them you need to know where to touch the software, and then you will understand 

the hustle. 

 

9. Is process modelling is important during developing of open source software , if yes 

why? 

Alpha IT Solution 

 Process modelling is important but not as important as it used to be. Most software 

projects are moving towards the agile software development processes. Agile 

process emphasize communication and collaboration over exhaustive 

documentation (which must occur in order to properly model a business’s entire 

process). Therefore, for rapid software development, the business analyst or the 

product owner should be available to answer questions around business processes. 

But, in general, process modelling will help increase business efficiency more than 

it directly helps software development. The better the business process is, the 

better the software will be as well 

Gasha consulting 

 Process models for both specific and standard uses are defined to help a smoother 

adoption of the platform to a set of use cases with a wider range. Process 

modelling helps to set operation standard of the platform which are usually 

referenced in deployment and refactor documentation. 

 

Atlantic IT Solutions 

 Developers who want to join an open source software project must discover its 

underlying development process by using public information sources on the Web. 

These sources include process enactment information such as informal task 

prescriptions, community and information structure, work roles, project and 

product development histories, electronic messages and communications patterns 

among project participants.   



45 
 

10. What is your general opinion on process modelling of open source software 

developments 

Alpha IT Solution 

 Process modelling is important for all software projects, not just open source. The 

better the process is modelled to reflect actual business processes, the better the 

quality of the software will be in that it enforcing those processes properly 

 

Gasha consulting 

 Process modeling is very important for open source software development  

Atlantic IT Solutions 

 If (process modelling){everything will be easy to understand} else{needs patience, 

dedication, coffee and few hours of sleep to understand}  

 

4.3. Supports from empirical study 

An empirical study is conducted to investigate the current practices and challenges of 

open source software process modeling. The findings of the empirical study provided 

inputs and the required conceptual support to the design of open source software process 

modeling.   

     The following key findings were summarized from chapter three that can be used as 

bases for the designing of open source software process modeling. 

 Well defined process modeling for open source software development is necessary for 

reusing codes and other purposes. 

 Documentation of the whole process is very important for open source software 

process modeling. 

Some key challenges for open source software process modeling: 

As far as open source software development is developed openly by individuals, it is 

difficult to manage the process. 



46 
 

     Process modeling for open source software developments is not easy like traditional 

software development. 

Documentation of open source software development is not easy like traditional software 

development. 

4.4.Conclusion of the analysis 

All of the software developers are using open source software for their software 

developing purpose.  In addition to this all of them agreed that process modeling is 

necessary for open source software’s especially for the purpose of documentation. 

     In the questionnaire the software developers respondents the following .main points 

1. Challenges of using open source software  

 Software version consistency 

 No vendor releasing updates 

 Testing  

 there is no company that is willing to support us for free 

 lack of support in the local context 

 lack of some of reference materials 

2. there is no  well-defined process modelling technique in ope source softwares  

3.  necessity  of process modelling for open source software  

 it is important to document  

 provide a clear outline for implementation as well as code refactoring for 

software developer 

 

4.5.Properties of the proposed model 

The model has common properties of modifying and used its source code and claims as 

your own freely. It is like any other software. However it is distinguished by its license, 

or terms of use, which guarantees certain freedoms, in contrast to closed proprietary 

software which restricts these rights. The model guarantees the right to access and modify 

the source code, and to use, reuses and redistribute the software, all with no royalty or 



47 
 

other costs in some cases, there can be an obligation to share improvements with the 

wider community, thus guaranteeing global benefit. These, apparently simple guarantees, 

have powerful implications: encourage reuse enable innovation, flexibility, and easier 

integration Open source software is licensed under terms which allow the user to practice. 

1. Use the software without access restrictions, within the terms of the license 

applied 

2. View the source code 

3. Improve and add to the object and source code, within the terms of the license 

applied and this may include a term making it mandatory to publish modified 

code on the community website 

4. Distribute the source code. 

 

4.6. The proposed model process 
 

     It  begins with a personal need of a single developer who has a vision and tries to 

devise solutions for his unmet need calls this “scratching an itch” [4]. Then he or she 

starts and discussion with his friends and colleagues about the possible solution and 

making the code base. He makes this code available to others which attract the attention 

of other user developers and inspire them to contribute to the project in this way the 

initial project community is formed and the development proceeds. Typically, anyone 

may contribute towards the development of the system and built Open Source 

Community to provide administration for the project. This initial community of interested 

persons starts to exchange their knowledge on the topic and start working on the issue 

until they achieve some satisfactory result. They make their work publicly available at a 

place where many people are able to access it. They may announce their project at places 

like mailing lists, newsgroups or online news services. Other persons recognize some of 

their own concerns in the project and are interested in a convenient solution, too.  



48 
 

Therefore, they review the projects result. As they look at the issue from a different 

perspective, they suggest improvements and even might join the project. These users now 

known as co-developer, helps in rapid code improvement and effective debugging. As the 

project grows more and more people get attached and a lot of feedback helps to get a 

better understanding of the issue, and possible strategies to solve it. New information and 

resources are integrated into the research process. The solution grows, and addresses the 

issue in ever better ways. The project’s community is established and will react to future 

changes the same way it emerged originally. 

 

Figure 4.1: proposed OSS process stages 

 

4.7. Steps of developing the proposed model 
 

1. Planning 

In this stage, no code has been written, the scope of the project is still in idea. As soon as 

tangible results in the form of source code appear, the project enters the next stage. 

2. Pre-Alpha 

During Pre-Alpha stage Very preliminary source code has been released. The code is not 

expected to compile, or even run. Outside observers may have a hard time to figure out 

the meaning of the source code. As soon as a coherent intent is visible in the code that 

indicates the eventual direction, the project enters the next stage. 

 



49 
 

3. Alpha 

After pre-Alpha stage, the next stage is Alpha stage. Here, released code works at least 

some of the time, and begins to take shape. Preliminary development notes may show up. 

Active work to expand the feature set of the application continues. As the amount of new 

features slows down, the project enters the next stage. 

4. Beta  

The code is feature-complete, but retains faults. These are gradually weeded out, leading 

to software that is ever more reliable. If the number of faults is deemed low enough, the 

project releases a stable version, and enters the next stage. 

5. Stable 

During this stage, the software is useful and reliable enough for daily use. Changes are 

applied very carefully, and the intent of changes is to increase stability, not new 

functionality. If no significant changes happen over a long time, and only minor issues 

remain, the project enters the next stage. 

6. Mature 

Mature stage is the last stage that is little or no new development occurring, as the 

software fulfills its purpose very reliably. Changes are applied with extreme caution, if at 

all. A project may remain in this final stage for many years before it slowly fades into the 

background because it has become obsolete, or replaced by better software. The source 

code for mature projects remains available indefinitely, however, and may serve 

educational purposes. 

4.8. Enhanced Agile Incremental: The proposed process modeling 
 

Major OSS are initiated by some group of people from different organizations in 

voluntarily basis and contributed by all interested people of different country and culture. 

It somehow may follow Evolutionary or Incremental Model as it is started from very 

small unit and gradually increased. But as this kind of software is not managed by a 



50 
 

single organization the requirement specification is confusing so that design is dependent 

on individual perception and skill. But all interested people create an open forum 

regarding the development procedure where they put different queries and answered by 

all as possible.  Or sometimes the first group of people who takes the initiation is creating 

an organization and other people join accordingly. There are 11 steps in the newly 

proposed Open Agile Incremental Model.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



51 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Concept/Personal 
need 

Initiate a project Join a project 

Look for similar projects 

Early development  

Early adoption 

Refinement  

Development 

Testing 

Initiation  

Maintenance  

Adoption  

Maturity 

Mainstream Documentation  

Figure4.2:  the proposed   model 



52 
 

4.9. Phases  of the proposed model 

Phase 1:Concept 

Some ideas have been thrown around by a few people. Some codes have been written. A 

project site is up, and there is maybe a working prototype to show off and talk about.  

There are no such documents placed there. A forum or website can be launched due to 

this purpose.  

Phase 2: Initiation/Bootstrap  

There are one or two serious authors/committers.  There might already be one or two 

actual users experimenting with the framework.  The developments are continuously 

going on.  Few discussions are going on using some blog posts on that forum or few 

related articles may be published. A controlling authority can be formed who guides or 

control the development process and program code contributed from various people.  

Phase 3: Early development  

A few more committers have signed on, but still there are only one or two primary 

contributors. A few more users have started playing with it now and are providing 

feedback.  A mailing list has certainly been set up. The build is more stable and works in 

many environments.  

Phase 4: Early adoption  

More committers are signing on now and contributing more and more.  The project is at a 

state with many of the baseline features are done and the product is quite usable now.  

There are a few dozen users experimenting with it and even building some interesting 

applications upon it.  Multiple people are discussing about it and contributing a bit. The 

forum/authority is starting to materialize the discussion into categories and sub-topics.  

Some sparse documentation has started to emerge in the form of some limited API 

documents; some FAQ‘s and getting started guides. So after this phase all contributors 

get a piece of software and concrete guidelines. The tasks carried by controlling authority 



53 
 

are increased. Because now they have to maintain the changes and modification made by 

different contributor throughout the world.  

Phase 5: Refinement of the concept / Specification  

In this phase based on the feedback and development scenarios the actual concepts may 

be refined and displayed as guideline. The prototype or very first version of OSS is now 

made. So any modification or refinement of the original concept is done. The 

specification guidelines are very concrete in this phase. This does not mean that the 

modification of the concept are not done later phase. Any good suggestions can lead to a 

new version of the OSS at any phase.  

Phase 6: Development   

There are several devoted committers/contributor now, cranking out serious features and 

functionality. The beta versions are distributed for free.  There are several users using the 

OSS and post their feedbacks or queries on the forum’s wall/blog. The codes are 

available for download regularly. Some restrictions may be imposed or not to get it.  The 

code is growing by all.  It is really taking shape and being fleshed out.  At this point 

documentation is moderate and is growing into more scenarios and topics.   

Phase 7: Testing/ Validation 

The developed code of single contributor is tested individually by the developer and then 

uploaded to be added with the main program code. The authority may test it again after 

integrating with the main code. If some modifications required the codes are again send 

to the actual developer or published in the forum mentioning the bugs so that contributor 

may debug it accordingly. The forum can take help of the experts also. 

Phase 8: Adoption 

Many people are submitting patches and other forms of contributions. The inner circle of 

committers is growing. There are frequent  point  releases available for download. There 

is now likely a basic installer which helps configure your environment for the framework.  

Frequent, in-depth blog posts by noted authors.  The wiki (A web site or set of web pages 



54 
 

that allows almost anyone to edit and add content) is now very rich and there are frequent 

contributions. Documentation at this point is adequate. The codes are now packaged and 

are distributed for free or with very nominal cost.  

Phase 9: Maintenance/ Support  

After adoption of the OSS now it is time for maintaining the software. Maintenance can 

be many types. Corrective: Correcting errors that were not discovered during the product 

development phase. This is called corrective maintenance. The corrections are made 

available to the users for free or as new release.  Perfective: Improving the 

implementation of the system, and enhancing the functionalities of the system according 

to the user’s requirement. This is called perfective maintenance.  Adaptive: Porting the 

software to work in a new computer environment/platform or to cope up with new kind 

of operating system. This is called adaptive maintenance. It is a time consuming process 

and there is no exact guidelines for that. Any type of maintenance may be required any 

time and may be raised by any user or developer any time.  

Phase 10: Maturity  

The maintenance phase may add a new kind of directions and may lead to another phase 

of development and sometimes refines the requirement. The contributors again start to 

develop another version of the OSS. The concepts are put in the wiki and guideline also. 

This process cycle may run for several years or decades and slowly moves to different 

levels of maturity. There are so many patches and contributors that a hierarchy has been 

set up to evaluate and approved changes.  Multiple releases create management issues 

with patches and defects requiring more organization. There over a thousand users by 

now.  There are releases and installers for various scenarios or environment. There is lots 

of documentation activity at this phase. 

Phase 11: Mainstream and documentation 

In this phase, many of the original contributors have moved on or are less involved. New 

generations of contributors have taken over and are taking the project into different 

directions and expanding it greatly.  There are hundreds of thousands of users. Perhaps 



55 
 

there are even consulting companies forming business services around the project and 

offering commercial support.   The project has its own active web site with lots of 

content, guides, add-ons, forums, blogs, etc. Finally the model is documented by the 

project initiators.  

4.10. Characteristics of the proposed model 

The proposed model has some characteristics. The model is designed with individuals 

collaborated with others. It follows modularity designing, iterative and incremental 

works, with these characteristics; the proposed model follows combination of Agile and 

Incremental methodology. So the model is Agile Incremental. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Software development 
process model 

 

 

 

 

 

 

 

 

 

Community process 
model 

User 

Developer  

Manager  

Maintainer 

Committer 

Steering 
committee 

Web team 
member 

Foundation 
member 

Figure 4.3: Definitional level of the Proposed Model 



56 
 

 

Definitional Level description of the model 

User:  that contributes to the project and downloads the release. The user also documents 

the project  

Developer:  develops, reviews   and test codes.  

Manager:  manages the project web site and releases process 

Maintainer: Manges the project code repository and  and package releases. 

Comiter: commites  codes in the code repository 

Steering committee:  steers a project, creates new project and manage the existing 

project  

Web member: manages the web portal 

Foundation member:  manages the fundation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Work 
Production 

view 

 

Work 
Organization 

view 

 

Work 
controlling 

view 

 

Figure 4.4: Proposed Model development views 



57 
 

 

Development view description 

Work production view: This includes both tasks and states of the product relating to 

design, coding, and testing. 

 

Work organizational view:  This view addresses the social aspect of development. This 

includes factors relating to communication and coordination, key roles and 

responsibilities, and motivation.  

 
Work control view: focuses on direction. More specifically, itdeals with mechanisms for 

guiding development. This includes planning, approval, data gathering, support, and 

documentation.  
 

 



58 
 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                  [Individual]              [Group] 

 

 

 

 

 

 

Uploading to groups 

 

Incremental 

 

Iteration 

 

Develop early version 
product 

Develop conceptual 
design 

Closed Prototype 

 

Personal review Peer review 

Personal itch  



59 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Frequent Iteration  Small Incremental  

Concurrent 
development 

Enhancements  

 

Concurrent Modular 
designs 

Posted on web 

 

Not posted 

 

Enhancement 

 

Final design  

 

[Not selected] [Design selected] 

Document the design 
in web portal  

Figure 4.5: Activity diagram of the proposed model 



60 
 

 

4.11. Validation of the proposed model 

By studying some OSSDLC models [27] we can conclude that all models are having 

different characteristics but basic features are similar. All other existing models are based 

on the basic priority of OSSD and useful. They also comprise different advantages of 

OSSD. Also it is very tough to decide which one is better and what are the relative 

disadvantages. Because of lacking regulation and discipline among developers it is not 

very easy to follow any OSSDLC models truly. Also if we categorize the software 

according to Bohem’1982 [28][29] there are three types of software, Organic, Semi-

detached and Embedded, according to size, complexity and resource required for 

development. Only first two types of software can imply any OSSDLC easily. Also on 

the basis of the size and complexity of the software some models may be proved useful 

and efficient than others. Without proper application of various OSSDLC on different 

OSS development worldwide and surveying thoroughly the effectiveness of different 

components cannot be estimated and compare usefulness. With the already existing 

models, described in several research papers and case studies; there are some advantages 

of using the proposed model. See below the comparison between existing models and the 

proposed ones. 

 

 

 

 

 

 

 

 



61 
 

Table 4.2:  comparison between existing models and the proposed ones 

Metrics Existing Models The Proposed Model 

 
quality  

 
OSS features result in quality software. 
Also There is little tolerance for failure to 
adhere to the tacitly accepted norms 
[30][31].  
 

Refinement of Concepts or 
Specification helps out to achieve 
best solution and thus increase 
quality 

Speed 
development 

 
Reuse of code increase development 
speed. The more people are creating code 
and adding value to a project, the product 
is released quickly and it becomes 
valuable to a user group.[13]. Critics 
question whether open source provides a 
rapid development environment and 
suggest that the result could be slower 
given the absence of formal management 
structures. The open source community is 
likened to a large, semi-organized mob 
with a fuzzy vision [32] [31].  
 

My proposed model requires a very 
good project initiation and control 
and thus eliminates the problem of 
absence of formal management 
structure or irregularities if any. 

 
Collaboration 

 
A further important feature of the OSSD 
model is the nature of the development 
community. Large numbers of 
geographically dispersed programmers 
are joined by the Internet to produce 
complex software and largely without 
pay. Reasons for participation in open 
source projects are mainly due to lots of 
challenge, improving skills, motivated 
wish for human welfare, fun, as well as 
for financial reward [30]  
 

The proposed model ensures 
collaboration in large in all phases. 

 

 

 

 

 

 



62 
 

Metrics Existing Models The Proposed Model 

Releases 

 
OSS is premised on rapid releases and 
typically has many more iterations than 
commercial software. This creates a 
management problem as a new release 
needs to be implemented in order for an 
organization to receive the full benefit. It 
is very tough to decide for organizations 
whether these newer versions will 
continue to support business needs [30]. 

 

The model is having a new release 
all the time when it completes the 
Adoption phase. The organizations 
will use and suggest improvements 
at general Support or Maintenance 
phase. That will definitely lead to 
newer kind formal requirement or 
concept and initiates another cycle of 
development. 

 

 
 

Support 
issues 

 

 
Wheatley [34] mentions the lack of 
accountability from a single vendor. 
While open source projects have a wide 
variety of resources (developers 
themselves, Internet mailing lists, 
archives and support databases) that can 
be tapped for support, the problem is that 
there is no single source of information, 
no help desk that provides definitive 
answers to problems. Open source 
developers are not contracted and 
therefore cannot be forced into creating 
documentation [32]  
 

The Refinement of Concept or 
Specification phase of the proposed 
model leads to documenting the 
requirements and modification 
history. Also the Validation and 
Adoption phase may generate high 
quality review report that can be 
used in future development or 
release. The developers also can do 
documentation with their coding to 
increase their code acceptance. 

 

 

 

 

 

 

 

 

 



63 
 

CHAPTER FIVE 

CONCLUSIONS AND FUTURE WORKS 
 

5.1. Conclusion 
 

     Open source movement is a social movement. All people of the world must be blessed 

with the advancement of technology to improve their lifestyle. Technology must not be in 

doomed in some companies for their business profit. With that, it must be kept in mind 

that the developed software must be adequate to fulfill the requirement of the new 

technological advancement of the user. An accepted standard model must be there for the 

development of OSS, so that the developed software becomes usable for a large number 

of people scattered in the whole world, not to a limited group of people. Research must 

go on, on the open source development life cycle to find well accepted model, and so that 

user can get standard software for their uses.   

With this reason, the paper focuses on process modeling in open source software 

developments. Many papers are addressed with in this context and review the papers 

especially in process modeling.  

After reviewing the documents,methodologies are designed to address the statement of 

the problem. Systematic research methodology with thematically addressed technique is 

used for document reviewing. For the methodology, open software users in the web and 

software developers in Addis Ababa are included in the questionnaire.  

     Finally, enhanced Agile Incremental process model is designed for open source 

software developments. 

     This model tries to address the problem of documentation and reusing models again in 

the open sources software development process with in its limitations.   

 



64 
 

5.2. Future Works 

     The proposed model will not be clear with its advantage and disadvantage, unless the 

model is used for development of some software project. In a future work it is better to 

use this model for some Open Source Software development to find its strong and weak 

features. Also better to find the complexity of development, development speed, number 

of bugs present, best testing methodology etc. of an Open Source Software developed by 

this model.  

     The research indicates that, there is no well-defined and accepted model for the OSS 

process developments. So further study shall be proceed especially, documenting and 

managing the process as whole. 

 

 

 

 

 

 

 

 

 

 

 

 



65 
 

REFERENCES 
 

[1]  J. Feller, B. Fitzgerald, S. A. Hissam, and K. R. Lakhani, Perspectives on Free and 

Open Source Software. The MIT Press,  2007.   

[2]   S. K. Sowe, Emerging Free and Open Source Software Practices , 1st ed. IGI 

Publishing, 2007.   

[3]   K. Schwalbe, Information Technology Project Management (with Microsoft Project 

2007 CD-ROM) , 6th ed. Course Technology, 2009. 

[4]. J. Feller and B. Fitzgerald, Understanding Open Source Software Development . 

Addison-Wesley Professional, 2001. 

[5].Morten Sieker Andreasen, Henrik Villemann Nielsen, Simon Ormholt Schrøder, Jan 

Stage,(2006), Usability in Open Source Software Development: Opinions and 

Practice, Information Technology and Control, Vol. 35, No. 3 A 

[6]. Rinette Roets, Marylou Minnaar, and Kerry Wright, (2007) Open source: Towards 

Successful Systems Development Projects in Developing Countries, Proceedings of 

the 9th InternationalConference on Social implications of computers in developing 

countries, Sao Paulo, Brazil, May2007. 

[7]. C. DiBona, S. Ockman, and M. Stone, Open Sources: Voices from the Open Source 

Revolution. Sebastopol, CA: O'Reilly, 1999.  

[8]. S. McConnell, “Open-Source Methodology:  Ready for Prime Time?,” IEEE 

Software, vol. July/August, no. 4, 1999,  pp. 6-8. 

[9]. P. Vixie, “Software Engineering,” in Open Sources: Voices from the Open Source 

Revolution, C. DiBona, S. Ockman, and M. Stone, Eds. Sebastopol, CA: O'Reilly, 

1999, pp. 91-100. 

[10]. B. Perens, “The Open Source Definition,” in Open Sources: Voices from the Open 

Source Revolution, C. DiBona, S. Ockman, and M. Stone, Eds. Sebastopol, CA: 

O'Reilly, 1999, pp. 171-188. 



66 
 

[11]. B. Rosa, “Proprietary Software vs FOSS.” [Online], Dissertation (1 essay),IPR    

University  Center, Spring2012, available: www.iprinfo.com [feb 15,2017]. 

[12].Somerville, 2004, software engineering (9thedition).[On-line]. Available: 

http://www.SoftwareEngineering-9.com/Web/Cleanroom[Feb, 17, 2017] 

[13]. Open Source Licence Proposa http://cio-nii.defense.gov/sites/oss/ 

Open_Source_Software_(OSS)_FAQ.htm 

[14]. Beck, Kent; et al. "Manifesto for Agile Software Development".  

http://agilemanifesto.org/. Retrieved 2010-06-14. 

 [15] Cockburn. A. “Agile Software Development”, Addison-Wesley, 2002. 

[16] Beck, Kent; et al. "Manifesto for Agile Software Development".  

http://agilemanifesto.org/. Retrieved 2010-06-14. 

 [17] DeMarco, T., Boehm, “The Agile Methods Fray”, IEEE Computer, Vol 35, no 6 

June 2002, pp 90-92. 

[18]. D. E. Wynn, “Organizational structure of open source projects: A life cycle 

approach”, presented at the Proceedings of the 7th Annual Conference of the 

Southern Association for Information Systems, Savannah, (2004). 

[19]. A. Mockus, R. Fielding and J. D. Herbsleb, “Two case studies of open source 

software development: Apache and Mozilla”, ACM Transactions on Software 

Engineering and Methodology, vol. 11, no. 3, (2000), pp. 309-34). 

[20]. Open source License Proposal” http://cio 

nii.defense.gov/sites/oss/open_source_software _ (OSS) _FAQ.htm” 

[21]. M.-W. Wu and Y.-D. Lin, “Open source software development: an overview”. 

Computer, vol. 34, no. 6, (2001), pp. 33-3. 

[22]. N. Jorgensen, “Putting it all in the trunk: Incremental software development in the 

Free BSD open   source project”, Information Systems Journal, vol. 11, no. 4, 

(2001), pp. 321-336.  

[23]. R. Roets, M. Minnaar and K. Wright, “Open source: Towards Successful Systems 

Development Projects in Developing Countries”, Proceedings of the 9th 

International Conference on Social implications of computers in developing 

countries, Sao Paulo, Brazil, [May,2007). 



67 
 

[24]. W. Scacchi, “Open Source Software Development Processes, version 2.5(online” 

http://www.ics.uci.edu/~wscacchi /Software Process/Open-Software-Process-

Models / Open-Source-Software-Development-Processes.ppt, [2002]. 

[25] J. O. Gilliam and L. Gazette, “Improving the Open Source Software Model with 

UML Case Tools”, vol. 67, [Jun, 2001]). 

[26]. W. Scacchi. (2001, Feb.). “Process Models in Software Engineering.” John Wiley 

and Sons, Inc,.[On-line].27(3). Available: www. Encyclopedia of Software 

Engineering [Feb,17, 21, 2017]. 

[27]. Z.Kamal ”process modeling languages: a literature review.”Malaysian Journal of 

Computer Science {on-line}. 14(2), pp.26.available: email: 

kamal_zamli@hotmail.com{Feb,18, 2017}. 

[28]. I, Mohd.”Modeling the open source software development processes using IDEF3 

standard”Thesis Submitted in Fulfillment of the Requirements for the Degree of 

Master of Computer Science, [Jan, 2013]. 

[28] Beck, Kent; et al. "Manifesto for Agile Software Development".  

http://agilemanifesto.org/. Retrieved 2010-06-14. 

[29]. Pressman,Roger S, “Software Engineering”, McGraw Hill, pp79-88.  

[30] Rishab A. Ghosh, Bernhard Krieger, Ruediger Glott, Gregorio Robles, “Free/Libre 

and Open Source Software: Survey and Study” , International Institute of 

Infonomics University of Maastricht, The Netherlands June 2002 

 [31] Valloppillil, V. “Open source Initiative (OSI) Halloween I: A (new?) software 

development methodology” 1998 

[32]N. Bezroukov, "Open Source Software Development as a Special Kind of Academic 

Research (Critique of Vulgar Raymondism)," http://firstmonday.org/issues/ 

issue4_10/bezroukov/index.html 

[33]Tom Adelstein, “How to Misunderstand Open Source Software Development”, 

December 1, 2003, http://www.consultingtimes.com/ossdev.html 

[34] M. Wheatley, CIO Magazine, “The Myths of. Open Source”, March 2004, http:// 

/www.cio.com/archive/030104/open.html 

 

 



68 
 

Appendices 

Research Questions and Answers Given by Web Users 

1. What is Open Source software? 

Answer: 

Open Source software is software that can be freely accessed, used, changed, and 

shared (in modified or unmodified form) by anyone. Open source software is made by 

many people, and distributed under licenses that comply with the Open Source 

Definition . 

2. Can Open Source software be used for commercial purposes? 

Answer: 

Absolutely, all Open Source software can be used for commercial purpose (not 

proprietary); the Open Source Definition guarantees this.  

3. Can we restrict how people use an Open Source licensed program? 

Answer: 

No. The freedom to use the program for any purpose is part of the Open Source 

Definition. Open source licenses do not discriminate against fields of endeavour. 

4. Can we stop "evil people" from using the program? 

Answer: 

No. The Open Source Definition specifies that, Open Source licenses may not 

discriminate against persons or groups. Giving everyone freedom means giving evil 

people freedom, too. 



69 
 

 

5. What is "free software" and is it the same as "open source"? 

Answer: 

"Free software" and "open source software" are two terms for the same thing: software 

released under licenses that guarantee a certain specific set of freedoms. 

6. What is "copy left"? Is it the same as "open source"? 

Answer: 

"Copy left" refers to licenses that allow derivative works but require them to use the 

same license as the original work.  

7. What is a "permissive" Open Source license? 

 

Answer: 

A "permissive" license is simply a non-copy left open source license — one that 

guarantees the freedoms to use, modify, and redistribute, but that permits 

proprietary derivative works.  

8. Can we call any program "Open Source" even if it doesn’t use an approved 

license? 

Answer 

Please don't do that. If you call it "Open Source" without using an approved 

license, you will confuse 

9. What is the best open source tool for building an institutional repository? 
Answer: 

In OpenDOAR can see other software used in the repositories. 



70 
 

 

10. Will open source software take more market share than commercial ones? 

Answer: 

Technical support will be key to the success of open source. Hundreds of people 

will be sitting in a IRC chat room, chatting, discussing, at the same time helping 

many who are in urgent need of help. I got help through IRC chat. 

11. How OSS is typically developed? 

Answer: 

OSS is typically developed through a collaborative process. 

12. How can we evaluate OSS process? 

Answer: 

OSS process should be evaluated in principle the same way you would evaluate any 
option, considering need, cost, and so on. In some cases, the sources of 
informationfor OSS differ.  

 

 

 

 

 

 

 

 



71 
 

 
St. Mary’s University  

Faculty of Informatics   
 

Introduction  

This questionnaire is prepared for the sake of  the partial fulfilment of the 
requirementsfor the degree of master of science in computer science.  So,  through this 
brief survey, your answers will be helpful in developing process modelling for open 
source software .your response will only be used for survey purpose only.in any case , if 
you have questions regarding the survey , please call Haimanot Abun at 
+251911306542(cell phone). Thank you very much for your time and suggestion. 

 

Part I 

Put ‘√’ mark in front of the options given below 

1. Are you using open source software for your different purpose? 

 Yes                                   No 

2. Open sources are preferred than conventional for developing software  

               Agree                              Disagree 

3. Process modelling is very important for developing open source software. 

.               Agree                              Disagree 

4. Is there any process model for open source software that you know before? 

               I know                               I don’t know 

5. If open source software process is modelled  like conventional ones, problem of 

documentation and reusing of codes will be solved. 

               Agree                                 Disagree 

 

 



72 
 

 

Part II 

Please fill the blanks below. 

 
1. What type of challenges do we face during using open source software? 

     --------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------

----------------------------------------------------------------------------------------------------- 

2. Is there a well-defined process modelling technique for the development of open 

source software . if no, what is the reason behind you expect  

---------------------------------------------------------------------------------------------------

---------------------------------------------------------------------------------------------------

---------------------------------------------------------------------------------------------------

---------------------------------------------------------------------------------------------------

-------------------------------------------------------------------------------------------- 

 

3.  Process modelling is necessary during open source software development? If yes 

what would be your opinion? 

---------------------------------------------------------------------------------------------------

---------------------------------------------------------------------------------------------------

---------------------------------------------------------------------------------------------------

---------------------------------------------------------------------------------------------------

-------------------------------------------------------------------------------------------- 

4. What is your opinion using process modelling during software developments? 



73 
 

---------------------------------------------------------------------------------------------------

---------------------------------------------------------------------------------------------------

---------------------------------------------------------------------------------------------------

---------------------------------------------------------------------------------------------------

-------------------------------------------------------------------------------------------- 

5. Why process modelling of open source software is very important? What is your 

opinion 

---------------------------------------------------------------------------------------------------

---------------------------------------------------------------------------------------------------

---------------------------------------------------------------------------------------------------

---------------------------------------------------------------------------------------------------

--------------------------------------------------------------------------------------------- 

6. Is documentation is important during development of open source software? 

Why? 

---------------------------------------------------------------------------------------------------

---------------------------------------------------------------------------------------------------

---------------------------------------------------------------------------------------------------

---------------------------------------------------------------------------------------------------

--------------------------------------------------------------------------------------------- 

7. Do you agree that, well defined process modelling of open source software   is 

mandatory?-- 

Why? 

---------------------------------------------------------------------------------------------------

---------------------------------------------------------------------------------------------------

---------------------------------------------------------------------------------------------------

---------------------------------------------------------------------------------------------------

--------------------------------------------------------------------------------------------- 

8. In your view, is reusing of codes in open source software development is easy? 

Why? 

---------------------------------------------------------------------------------------------------

---------------------------------------------------------------------------------------------------



74 
 

---------------------------------------------------------------------------------------------------

---------------------------------------------------------------------------------------------------

--------------------------------------------------------------------------------------------- 

9. Is process modelling is important during developing of open source software , if yes 

why? 

---------------------------------------------------------------------------------------------------

---------------------------------------------------------------------------------------------------

---------------------------------------------------------------------------------------------------

---------------------------------------------------------------------------------------------------

----------------------------------------------------------------------------------------------- 

10. What is your general opinion on process modelling of open source software 

developments? 

-------------------------------------------------------------------------------------------------------

-------------------------------------------------------------------------------------------------------

-------------------------------------------------------------------------------------------------------

-------------------------------------------------------------------------------------------------------

-------------------------------------------------------------------------------------------------------

-------------------------------------------------------------------------------------------------------

-------------------------------------------------------------------------------------------------------

-------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------ 

 

 

Thank you for your cooperation 

 


